If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x)=7x^2-567
We move all terms to the left:
(x)-(7x^2-567)=0
We get rid of parentheses
-7x^2+x+567=0
a = -7; b = 1; c = +567;
Δ = b2-4ac
Δ = 12-4·(-7)·567
Δ = 15877
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{15877}}{2*-7}=\frac{-1-\sqrt{15877}}{-14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{15877}}{2*-7}=\frac{-1+\sqrt{15877}}{-14} $
| a/7+7=1 | | 4(6b-2)-b+44=16(b+11) | | -9=-5+2u | | 6-2/3k=4/3k | | 9=x-18 | | 5v+13=58 | | x2/3+5=17 | | -6=v-2+13v+17 | | 3(x-4)-(7x-6)=-7 | | 2x+7=27/5 | | 49=3y-11 | | -7x+1/2=-69/2 | | 20-4m=8 | | 1/3+7x=190/3 | | e+1.2=2e | | 4-(8-3n)=-7(-5n-4) | | 4x^2+9/5=5 | | 8-3n=3n+2 | | a/3+6=12 | | 10-6x-9x^2=-9x | | 8.8x+5=-19-4x | | 5x-15+2x=-2x+14+7 | | 2n+15=3n+45 | | 3/4x-1=23/4 | | x=2x^2-22x+780 | | 3.6x+x=4000 | | -1/2x-7=-6 | | v/8=2v= | | 16x^2-14x-1=0 | | 1/x-1=2/x | | 3x-5/2=4x+1/4 | | 3.6x+x=5000 |